990 resultados para biventricular assist device


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a recent study have shown that there is a severe shortage of donor hearts to meet the demand of patients suffering from acute heart failures, and patients who received a left ventricular assist device (LVAD) have extended lives. However, some of them develop right heart failure syndrome, and these patients required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (Bi-VAD). Computational Fluid Dynamics (CFD) is useful for estimating blood damage for design of a Bi-VAD centrifugal heart pump to meet the demand of the left and right ventricles of a normal hearts with a flow rate of 5 lit/min and the supply pressure of 100 mmHg for the left ventricle and 20 mmHg for the right ventricle. Numerical studies have been conducted to predict pressure, flow rate, the velocity profiles, and streamlines in a continuous flow Bi-VAD using. Based on the predictions of numerical simulations, only few flow regions in the Bi-VAD exhibited signs of velocity profiles and stagnation points, thereby signifying potentially low levels of thrombogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow-balancing Starling response is diminished in both ventricles. The reliability of sensor and sensor-less based control systems which aim to control VAD flow based on preload have limitations and thus an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a compliant inflow cannula could potentially be used as a passive control system to prevent suction events in rotary left, right and biventricular support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular diseases are a leading cause of death throughout the developed world. With the demand for donor hearts far exceeding the supply, a bridge-to-transplant or permanent solution is required. This is currently achieved with ventricular assist devices (VADs), which can be used to assist the left ventricle (LVAD), right ventricle (RVAD), or both ventricles simultaneously (BiVAD). Earlier generation VADs were large, volume-displacement devices designed for temporary support until a donor heart was found. The latest generation of VADs use rotary blood pump technology which improves device lifetime and the quality of life for end stage heart failure patients. VADs are connected to the heart and greater vessels of the patient through specially designed tubes called cannulae. The inflow cannulae, which supply blood to the VAD, are usually attached to the left atrium or ventricle for LVAD support, and the right atrium or ventricle for RVAD support. Few studies have characterized the haemodynamic difference between the two cannulation sites, particularly with respect to rotary RVAD support. Inflow cannulae are usually made of metal or a semi-rigid polymer to prevent collapse with negative pressures. However suction, and subsequent collapse, of the cannulated heart chamber can be a frequent occurrence, particularly with the relatively preload insensitive rotary blood pumps. Suction events may be associated with endocardial damage, pump flow stoppages and ventricular arrhythmias. While several VAD control strategies are under development, these usually rely on potentially inaccurate sensors or somewhat unreliable inferred data to estimate preload. Fixation of the inflow cannula is usually achieved through suturing the cannula, often via a felt sewing ring, to the cannulated chamber. This technique extends the time on cardiopulmonary bypass which is associated with several postoperative complications. The overall objective of this thesis was to improve the placement and design of rotary LVAD and RVAD inflow cannulae to achieve enhanced haemodynamic performance, reduced incidence of suction events, reduced levels of postoperative bleeding and a faster implantation procedure. Specific objectives were: * in-vitro evaluation of LVAD and RVAD inflow cannula placement, * design and in-vitro evaluation of a passive mechanism to reduce the potential for heart chamber suction, * design and in-vitro evaluation of a novel suture-less cannula fixation device. In order to complete in-vitro evaluation of VAD inflow cannulae, a mock circulation loop (MCL) was developed to accurately replicate the haemodynamics in the human systemic and pulmonary circulations. Validation of the MCL’s haemodynamic performance, including the form and magnitude of pressure, flow and volume traces was completed through comparisons of patient data and the literature. The MCL was capable of reproducing almost any healthy or pathological condition, and provided a useful tool to evaluate VAD cannulation and other cardiovascular devices. The MCL was used to evaluate inflow cannula placement for rotary VAD support. Left and right atrial and ventricular cannulation sites were evaluated under conditions of mild and severe heart failure. With a view to long term LVAD support in the severe left heart failure condition, left ventricular inflow cannulation was preferred due to improved LVAD efficiency and reduced potential for thrombus formation. In the mild left heart failure condition, left atrial cannulation was preferred to provide an improved platform for myocardial recovery. Similar trends were observed with RVAD support, however to a lesser degree due to a smaller difference in right atrial and ventricular pressures. A compliant inflow cannula to prevent suction events was then developed and evaluated in the MCL. As rotary LVAD or RVAD preload was reduced, suction events occurred in all instances with a rigid inflow cannula. Addition of the compliant segment eliminated suction events in all instances. This was due to passive restriction of the compliant segment as preload dropped, thus increasing the VAD circuit resistance and decreasing the VAD flow rate. Therefore, the compliant inflow cannula acted as a passive flow control / anti-suction system in LVAD and RVAD support. A novel suture-less inflow cannula fixation device was then developed to reduce implantation time and postoperative bleeding. The fixation device was evaluated for LVAD and RVAD support in cadaveric animal and human hearts attached to a MCL. LVAD inflow cannulation was achieved in under two minutes with the suture-less fixation device. No leakage through the suture-less fixation device – myocardial interface was noted. Continued development and in-vivo evaluation of this device may result in an improved inflow cannulation technique with the potential for off-bypass insertion. Continued development of this research, in particular the compliant inflow cannula and suture-less inflow cannulation device, will result in improved postoperative outcomes, life span and quality of life for end-stage heart failure patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Right heart dysfunction is one of the most serious complications following implantation of a left ventricular assist device (LVAD), often leading to the requirement for short or long term right ventricular support (RVAD). The inflow cannulation site induces major haemodynamic changes and so there is a need to optimize the site used depending on the patient's condition. Therefore, this study evaluated and compared the haemodynamic influence of right atrial (RAC) and right ventricular (RVC) inflow cannulation sites. An in-vitro, variable heart failure, mock circulation loop was used to compare RAC and RVC in mild and severe biventricular heart failure (BHF) conditions. In the severe BHF condition, higher ventricular ejection fraction (RAC: 13.6%, RVC: 32.7%) and thus improved heart chamber and RVAD washout was observed with RVC, which suggested this strategy might be preferable for long term support (ie. bridge to transplant or destination therapy) to reduce the risk of thrombus formation. In the mild BHF condition, higher pulmonary valve flow (RAC: 3.33 L/min, RVC: 1.97 L/min) and lower right ventricular stroke work (RAC: 0.10 W, RVC: 0.13 W) and volumes were recorded with RAC. These results indicate an improved potential for myocardial recovery, thus RAC should be chosen in this condition. This in-vitro study suggests that RVAD inflow cannulation site should be chosen on a patient-specific basis with a view to the support strategy to promote myocardial recovery or reduce the risk of long-term complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shortage of donor hearts for patients with end stage heart failure has accelerated the development of ventricular assist devices (VAD) that act as a replacement heart. Mechanical devices involving pulsatile, axial and centrifugal devices have been proposed. Recent clinical developments indicate that centrifugal devices are not only beneficial for bridge to transplantation applications, but may also aid myocardial recovery. The results of a recent study have shown that patients who received a VAD have extended lives and improved quality of life compared to recipients of drug therapy. Unfortunately 25% of these patients develop right heart failure syndrome, sepsis and multi-organ failure. It was reported that 17% of patients initially receiving an LVAD later required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (BVAD). Current BVAD technology is either too bulky or necessitates having to implant two pumps working independently. The latter requires two different controllers for each pump leading to the potential complication of uneven flow dynamics and the requirements for a large amount of body space. This paper illustrates the combination of the LVAD and RVAD as one complete device to augment the function of both the left and right cardiac chambers with double impellers. The proposed device has two impellers rotating in counter directions, hence eliminating the necessity of the body muscles and tubing/heart connection to restrain the pump. The device will also have two separate chambers with independent rotating impeller for the left and right chambers. A problem with centrifugal impellers is the fluid stagnation underneath the impeller. This leads to thrombosis and blood clots.This paper presents the design, construction and location of washout hole to prevent thrombus for a Bi-VAD centrifugal pump. Results using CFD will be used to illustrate the superiority of our design concept in terms of preventing thrombus formation and hemolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.